Our publications are listed below in reverse chronological order. When available in print, papers are accessible through links to the original Journal web pages including the full article information are attached to the doi numbers.

Pre-prints of submitted or in press papers for which a member of the CCC research group is the lead author may be made available upon request. Fulfillment of requests for pre-prints will be decided on a case-by-case basis. Please send requests for pre-prints to Dr. Cameron R. Homeyer.

*Indicates CCC student author. All CCC authors denoted in bold text.

Featured Articles:


  1. Mecikalski, J. R., T. N. Sandmæl*, E. M. Murillo*, C. R. Homeyer, K. M. Bedka, J. M. Apke, and C. P. Jewett, 2021: A Random Forest Model to Assess Predictor Importance and Nowcast Severe Storms using High-Resolution Radar–GOES Satellite–Lightning Observations, Mon. Wea. Rev., in press, doi:10.1175/MWR-D-19-0274.1
  2. Eddy, A. J.*, D. R. MacGorman, C. R. Homeyer, and E. Williams, 2021: Intraregional Comparisons of the Near-Storm Environments of Storms Dominated by Frequent Positive versus Negative Cloud-to-Ground Flashes, Earth and Space Science, in press, doi:10.1029/2020EA001141
  3. Brauer, N. S., J. B. Basara, P. E. Kirstetter, R. A. Wakefield, C. R. Homeyer, J. Yoo, M. Shepherd, and J. A. Santanello, 2021: The Inland Maintenance and Re-intensification of Tropical Storm Bill (2015) Part 2: Precipitation Microphysics, J. Hydrometeor. , in press, doi:10.1175/JHM-D-20-0151.1
  4. Murillo, E. M.*C. R. Homeyer, and J. T. Allen, 2021: A 23-Year Severe Hail Climatology using GridRad MESH Observations, Mon. Wea. Rev., 149, 945–958, doi:10.1175/MWR-D-20-0178.1
  5. Lin, Y., J. Fan, J.-H. Jeong, Y. Zhang, C. R. Homeyer, and J. Wang, 2021: Urbanization-induced land and aerosol impacts on storm propagation and hail characteristics, J. Atmos. Sci., 78, 925–947, doi:10.1175/JAS-D-20-0106.1
  6. Tinney, E. N.*, and C. R. Homeyer, 2021: A 13-year Trajectory-Based Analysis of Convection-Driven Changes in Upper Troposphere Lower Stratosphere Composition over the United States, J. Geophys. Res. Atmos., 126, doi:10.1029/2020JD033657
  7. Homeyer, C. R., A. O. Fierro, B. A. Schenkel, A. C. Didlake, G. M. McFarquhar, J. Hu, A. V. Ryzhkov, J. B. Basara, A. M. Murphy*, and J. Zawislak, 2021: Polarimetric Signatures in Landfalling Tropical Cyclones, Mon. Wea. Rev., 149, 131–154, doi:10.1175/MWR-D-20-0111.1


  1. Homeyer, C. R., T. N. Sandmæl*, C. K. Potvin, and A. M. Murphy*, 2020: Distinguishing Characteristics of Tornadic and Nontornadic Supercell Storms from Composite Mean Analyses of Radar Observations, Mon. Wea. Rev., 148, 5015–5040, doi:10.1175/MWR-D-20-0136.1
  2. Lagerquist, R.*, A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep Learning on Three-Dimensional Multiscale Data for Next-hour Tornado Prediction, Mon. Wea. Rev., 148, 2837–2861, doi:10.1175/MWR-D-19-0372.1
  3. Cuchiara, G. C., A. Fried, M. C. Barth, M. Bela, C. R. Homeyer, B. Gaubert, J. Walega, P. Weibring, D. Richter, P. Wennberg, J. Crounse, M. Kim, G. Diskin, T. M. Hanisco, G. M. Wolfe, A. Beyersdorf, J. Peischl, I. B. Pollack, J. M. St. Clair, S. Woods, S. Tanelli, T. P. Bui, J. Dean-Day, G. Huey, and N. Heath, 2020: Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res. Atmos., 125, doi:10.1029/2019JD031957
  4. Martin, E. R., C. R. Homeyer, R. A. McKinzie*, K. M. McCarthy*, and T. Xian, 2020: Regionally Varying Assessments of Upper-Level Tropical Width in Reanalyses and CMIP5 Models Using a Tropopause Break Metric, J. Climate, 33, 5885–5903, doi:10.1175/JCLI-D-19-0629.1
  5. Phoenix, D. B.*, C. R. Homeyer, M. C Barth, and S. B. Trier, 2020: Mechanisms Responsible for Stratosphere-to-Troposphere Transport around a Mesoscale Convective System Anvil, J. Geophys. Res. Atmos., 125, doi:10.1029/2019JD032016
  6. Jeong, J-H., J. Fan, C. R. Homeyer, and Z. Hou, 2020: Understanding Hailstone Temporal Variability and Contributing Factors over the United States Southern Great Plains, J. Clim., 33, 3947–3966, doi:10.1175/JCLI-D-19-0606.1
  7. Brauer, N. S.*, J. B. Basara, C. R. Homeyer, G. M. McFarquhar, and P. E. Kirstetter, 2020: Quantifying Precipitation Efficiency and Drivers of Excessive Precipitation in Post-Landfall Hurricane Harvey, J. Hydrometeor., 21, 433–452, doi:10.1175/JHM-D-19-0192.1
  8. Starzec, M.*, G. L. Mullendore, and C. R. Homeyer, 2020: Retrievals of Convective Detrainment Heights Using Ground-based Radar Observations, J. Geophys. Res. Atmos., 125, doi:10.1029/2019JD031164
  9. Jeyaratnam, J., J. F. Booth, C. M. Naud, Z. J. Luo, and C. R. Homeyer, 2020: Upright convection in extratropical cyclones: A survey using ground-based radar data over the United States, Geophys. Res. Lett., 47, doi:10.1029/2019GL086620


  1. Tang, B. H., V. A. Gensini, and C. R. Homeyer, 2019: Trends in United States large hail environments and observations, npj Climate and Atmospheric Science2, 45, doi:10.1038/s41612-019-0103-7
  2. Sandmæl, T. N.*, C. R. Homeyer, K. M. Bedka, J. M. Apke, J. R. Mecikalski, and K. Khlopenkov, 2019: Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms, J. Appl. Meteor. Climatol., 58, 2569–2590, doi:10.1175/JAMC-D-18-0241.1
  3. McGovern, A., R. A. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning, Bull. Amer. Meteorol. Soc.100, 2175–2199, doi:10.1175/BAMS-D-18-0195.1
  4. Zhang, Y., J. Fan, T. Logan, Z. Li, and C. R. Homeyer, 2019: Wildfire impact on environmental thermodynamics and severe convective storms, Geophys. Res. Lett.46, 10,082–10,093, doi:10.1029/2019GL084534
  5. Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal Characteristics and Large-scale Environments of Mesoscale Convective Systems East of the Rocky Mountains, J. Climate32, 7303–7328, doi:10.1175/JCLI-D-19-0137.1
  6. Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains, J. Climate32, 6749–6767, doi:10.1175/JCLI-D-18-0839.1
  7. Xian, T., and C. R. Homeyer, 2019: Global tropopause altitudes in radiosondes and reanalyses, Atmos. Chem. Phys.19, 5661–5678, doi:10.5194/acp-19-5661-2019
  8. Murillo, E. M.*, and C. R. Homeyer, 2019: Severe Hail Fall and Hail Storm Detection using Remote Sensing Observations, J. Appl. Meteor. Climatol.58, 947–970, doi:10.1175/JAMC-D-18-0247.1


  1. Apke, J. M., J. R. Mecikalski, K. Bedka, E. W. McCaul, C. R. Homeyer, and C. P. Jewett, 2018: Relationships Between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector-Derived Flow, Mon. Wea. Rev.146, 3461–3480, doi:10.1175/MWR-D-18-0119.1
  2. Handler, S. L.*, and C. R. Homeyer, 2018: Radar-Observed Bulk Microphysics of Midlatitude Leading-Line Trailing-Stratiform Mesoscale Convective Systems, J. Appl. Meteor. Climatol.57, 2231–2248, doi:10.1175/JAMC-D-18-0030.1
  3. Bedka, K., E. M. Murillo*, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The Above Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery, Wea. Forecasting33, 1159–1181, doi:10.1175/WAF-D-18-0040.1
  4. Bela, M. M., M. C. Barth, O. B. Toon, A. Fried, C. Ziegler, K. A. Cummings, Y. Li, K. E. Pickering, C. R. Homeyer, H. Morrison, Q. Yang, R. M. Mecikalski, L. Carey, M. I. Biggerstaff, D. P. Betten, and A. A. Alford, 2018: Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States, J. Geophys. Res. Atmos.123, 7594–7614, doi:10.1029/2018JD028271
  5. Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten-Year Analysis of Tropopause-Overshooting Convection using GridRad Data, J. Geophys. Res. Atmos.123, 329–343, doi:10.1002/2017JD027718


  1. Smith, J. B., D. M. Wilmouth, K. M. Bedka, K. P. Bowman, C. R. Homeyer, J. A. Dykema, M. R. Sargent, C. Clapp, S. S. Leroy, D. S. Sayres, J. M. Dean-Day, T. P. Bui, and J. G. Anderson, 2017: A Case Study of Convectively Sourced Water Vapor Observed in the Overworld Stratosphere over the United States, J. Geophys. Res. Atmos.122, 95299554, doi:10.1002/2017JD026831
  2. Phoenix, D. B.*, C. R. Homeyer, and M. C. Barth, 2017: Sensitivity of simulated convection-driven stratosphere-troposphere exchange in WRF-Chem to the choice of physical and chemical parameterization, Earth and Space Science4, 454471, doi:10.1002/2017EA000287
  3. Anderson, J. G., D. K. Weisenstein, K. P. Bowman, C. R. Homeyer, J. B. Smith, D. M. Wilmouth, D. S. Sayres, J. E. Klobas, S. S. Leroy, J. A. Dykema, and S. C. Wofsy, 2017: Control of Stratospheric Ozone Over the U.S. in Summer: Analyses Linking Temperature, Convective Injection Heights and Frequency, Sulfate and Chlorine Radical Catalysis, Proc. Nat. Acad. Sci.114, E4905E4913, doi:10.1073/pnas.1619318114
  4. Sorooshian, A., T. Shingler, E. Crosbie, M. C. Barth, C. R. Homeyer, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, K. L. Thornhill, L. D. Ziemba, D. R. Blake, and A. Fried, 2017: Contrasting aerosol optical and hygroscopic properties in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res. Atmos.122, 45654577, doi:10.1002/2017JD026638
  5. Homeyer, C. R.J. D. McAuliffe*, and K. M. Bedka, 2017: On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection, J. Atmos. Sci.74, 16171633, doi:10.1175/JAS-D-16-0269.1
  6. Boothe, A. C.*, and C. R. Homeyer, 2017: Global large-scale stratosphere–troposphere exchange in modern reanalyses, Atmos. Chem. Phys.17, 5537–5559, doi:10.5194/acp-17-5537-2017
  7. Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm Labeling in 3 Dimensions (SL3D): A Volumetric Radar Echo and Dual-Polarization Updraft Classification Algorithm, Mon. Wea. Rev.145, 1127–1145, doi:10.1175/MWR-D-16-0089.1
  8. Fujiwara, M., J. S. Wright, G. L. Manney, L. J. Gray, J. Anstey, T. Birner, S. Davis, E. P. Gerber, V. L. Harvey, M. I. Hegglin, C. R. Homeyer, J. A. Knox, K. Krüger, A. Lambert, C. S. Long, P. Martineau, A. Molod, B. M. Monge-Sanz, M. L. Santee, S. Tegtmeier, S. Chabrillat, D. G. H. Tan, D. R. Jackson, S. Polavarapu, G. P. Compo, R. Dragani, W. Ebisuzaki, Y. Harada, C. Kobayashi, W. McCarty, K. Onogi, S. Pawson, A. Simmons, K. Wargan, J. S. Whitaker, and C-Z. Zou, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys.17, 1417–1452, doi:10.5194/acp-17-1417-2017
  9. Pan, L. L., E. L. Atlas, R. J. Salawitch, S. B. Honomichl, J. F. Bresch, W. J. Randel, E. C. Apel, R. S. Hornbrook, A. J. Weinheimer, D. C. Anderson, S. J. Andrews, S. Baidar, S. P. Beaton, T. L. Campos, L. J. Carpenter, D. Chen, B. Dix, V. Donets, S. R. Hall, T. F. Hanisco, C. R. Homeyer, L. G. Huey, J. B. Jensen, L. Kaser, D. E. Kinnison, T. K. Koenig, J-F. Lamarque, C. Liu, J. Luo, Z. J. Luo, D. D. Montzka, J. M. Nicely, R. B. Pierce, D. D. Riemer, T. Robinson, P. Romashkin, A. Saiz-Lopez, S. Schauffler, O. Shieh, M. H. Stell, G. Vaughan, K. Ullmann, R. Volkamer, and G. Wolfe, 2017: The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment, Bull. Amer. Meteorol. Soc.98, 106–128, doi:10.1175/BAMS-D-14-00272.1


  1. Tian, J., X. Dong, B. Xi, J. Wang, C. R. Homeyer, G. M. McFarquhar, and J. Fan, 2016: Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements, J. Geophys. Res. Atmos.121, 10,82010,839, doi:10.1002/2015JD024686
  2. Barth, M. C., M. M. Bela, A. Fried, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, N. J. Blake, D. R. Blake, C. R. Homeyer, W. H. Brune, L. Zhang, J. Mao, X. Ren, T. B. Ryerson, I. B. Pollack, J. Peischl, R. C. Cohen, B. A. Nault, L. G. Huey, X. Liu, and C. A. Cantrell, 2016: Convective Transport and Scavenging of Peroxides by Thunderstorms Observed over the Central U.S. during DC3, J. Geophys. Res. Atmos., 121, 42724295, doi:10.1002/2015JD024570
  3. Bela, M. M., M. C. Barth, O. B. Toon, A. Fried, C. R. Homeyer, H. Morrison, K. A. Cummings, Y. Li, K. E. Pickering, D. Allen, Q. Yang, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. P. Teng, D. O’Sullivan, L. G. Huey, D. Chen, X. Liu, D. Blake, N. Blake, E. Apel, R. S. Hornbrook, F. Flocke, T. Campos, and G. Diskin, 2016: Wet Scavenging of Soluble Gases in DC3 Deep Convective Storms Using WRF-Chem Simulations and Aircraft Observations, J. Geophys. Res. Atmos.121, 42334257, doi:10.1002/2015JD024623
  4. Pollack, I. B., C. R. Homeyer, T. B. Ryerson, K. C. Aikin, J. Peischl, E. C. Apel, T. Campos, F. Flocke, R. S. Hornbook, D. J. Knapp, D. D. Montzka, A. J. Weinheimer, D. Riemer, G. Diskin, G. Sachse, T. Mikoviny, A. Wisthaler, E. Bruning, D. MacGorman, K. A. Cummings, K. E. Pickering, H. Huntrieser, M. Lichtenstern, H. Schlager, and M. C. Barth, 2016: Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains, J. Geophys. Res. Atmos.121, 20022028, doi:10.1002/2015JD023941
  5. Solomon, D. L., K. P. Bowman, and C. R. Homeyer, 2016: Tropopause-Penetrating Convection from Three-Dimensional Gridded NEXRAD Data, J. Appl. Met. Clim.55, 465–478, doi:10.1175/JAMC-D-15-0190.1


  1. Homeyer, C. R., 2015: Numerical simulations of extratropical tropopause-penetrating convection: Sensitivities to grid resolution, J. Geophys. Res. Atmos.120, 7174–7188, doi:10.1002/2015JD023356
  2. Diao, M., J. B. Jensen, L. L. Pan, C. R. Homeyer, S. Honomichl, J. F. Bresch, and A. Bansemer, 2015: Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries, J. Geophys. Res. Atmos.120, 5101–5121, doi:10.1002/2015JD023139
  3. Apel, E. C., R. S. Hornbrook, A. J. Hills, M. C. Barth, A. Weinheimer, C. Cantrell, S. A. Rutledge, B. Basarab, J. Crawford, G. Diskin, C. R. Homeyer, T. Campos, F. Flocke, A. Fried, D. R. Blake, W. Brune, I. Pollack, J. Peischl, T. Ryerson, P. O. Wennberg, J. D. Crounse, A. Wisthaler, T. Mikoviny, G. Huey, B. Heikes, D. O’Sullivan, and D. D. Reimer, 2015: Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J. Geophys. Res. Atmos.120, 2505–2523, doi:10.1002/2014JD022121
  4. Homeyer, C. R. and M. R. Kumjian, 2015: Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations, J. Atmos. Sci.72, 870–891, doi:10.1175/JAS-D-13-0388.1


  1. Pan, L. L., C. R. Homeyer, S. Honomichl, B. A. Ridley, M. Weisman, M. C. Barth, J. W. Hair, M. A. Fenn, C. Butler, G. S. Diskin, J. H. Crawford, T. B. Ryerson, I. Pollack, J. Peischl, and H. Huntrieser, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air, Geophys. Res. Lett.41, 7785–7790, doi:10.1002/2014GL061921
  2. Homeyer, C. R., L. L. Pan, S. W. Dorsi, L. M. Avallone, A. J. Weinheimer, A. S. O’Brien, J. P. DiGangi, M. A. Zondlo, T. B. Ryerson, G. S. Diskin, and T. L. Campos, 2014: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events, J. Geophys. Res. Atmos.119, 10,941–10,958,  doi:10.1002/2014JD021485
  3. Peevey, T. R., J. C. Gille, C. R. Homeyer, and G. L. Manney, 2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions, J. Geophys. Res. Atmos.119, 10,194–10,212,  doi:10.1002/2014JD021808
  4. Homeyer, C. R., C. Schumacher, and L. J. Hopper Jr., 2014: Assessing the Applicability of the Tropical Convective-Stratiform Paradigm in the Extratropics Using Radar Divergence Profiles, J. Clim.27, 6673–6686, doi:10.1175/JCLI-D-13-00561.1
  5. Homeyer, C. R., L. L. Pan, and M. C. Barth, 2014: Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratosphere stability, J. Geophys. Res. Atmos.119, 2220–2240, doi:10.1002/2013JD020931
  6. Homeyer, C. R., 2014: Formation of the Enhanced-V Infrared Cloud Top Feature from High-Resolution Three-Dimensional Radar Observations, J. Atmos. Sci.71, 332–348, doi:10.1175/JAS-D-13-079.1


  1. Homeyer, C. R. and K. P. Bowman, 2013: Rossby Wave Breaking and Transport between the Tropics and Extratropics above the Subtropical Jet, J. Atmos. Sci.70, 607–626, doi:10.1175/JAS-D-12-0198.1


  1. Pan, L. L., A. Kunz, C. R. Homeyer, L. A. Munchak, D. E. Kinnison, and S. Tilmes, 2012: Commentary on using equivalent latitude in the upper troposphere and lower stratosphere, Atmos. Chem. Phys.12, 9187–9199, doi:10.5194/acp-12-9187-2012


  1. Homeyer, C. R., K. P. Bowman, L. L. Pan, M. A. Zondlo, and J. F. Bresch, 2011: Convective injection into stratospheric intrusions, J. Geophys. Res., 116, D23304, doi:10.1029/2011JD016724
  2. Homeyer, C. R., K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, 2011: Dynamical and chemical characteristics of tropospheric intrusions observed during START08, J. Geophys. Res.116, D06111, doi:10.1029/2010JD015098


  1. Homeyer, C. R., K. P. Bowman, and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from high-resolution sounding data, J. Geophys. Res.115, D13108, doi:10.1029/2009JD013664
  2. Pan, L. L., K. P. Bowman, E. L. Atlas, S. C. Wofsy, F. Zhang, J. F. Bresch, B. A. Ridley, J. V. Pittman, C. R. Homeyer, P. Romashkin, and W. A. Cooper, 2010: The Stratosphere-Troposphere Analyses of Regional Transport 2008 (START08) Experiment, Bull. Amer. Meteorol. Soc.91, 327–329, doi:10.1175/2009BAMS2865.1


  1. Bowman, K. P., C. R. Homeyer and D. G. Stone, 2009: A Comparison of Oceanic Precipitation Estimates in the Tropics and Subtropics, J. App. Meteor. & Clim.48, 1335–1344, doi:10.1175/2009JAMC2149.1